Contrastive Quantization with Code Memory for Unsupervised Image Retrieval
نویسندگان
چکیده
The high efficiency in computation and storage makes hashing (including binary quantization) a common strategy large-scale retrieval systems. To alleviate the reliance on expensive annotations, unsupervised deep becomes an important research problem. This paper provides novel solution to quantization, namely Contrastive Quantization with Code Memory (MeCoQ). Different from existing reconstruction-based strategies, we learn descriptors by contrastive learning, which can better capture discriminative visual semantics. Besides, uncover that codeword diversity regularization is critical prevent learning-based quantization model degeneration. Moreover, introduce code memory module boosts learning lower feature drift than conventional memories. Extensive experiments benchmark datasets show MeCoQ outperforms state-of-the-art methods. configurations are publicly released.
منابع مشابه
Deep Quantization Network for Efficient Image Retrieval
Hashing has been widely applied to approximate nearest neighbor search for large-scale multimedia retrieval. Supervised hashing improves the quality of hash coding by exploiting the semantic similarity on data pairs and has received increasing attention recently. For most existing supervised hashing methods for image retrieval, an image is first represented as a vector of hand-crafted or machin...
متن کاملFuzzy ART for Relatively Fast Unsupervised Image Color Quantization
The use of Fuzzy Adaptive Resonance Theory (FA) is explored for the unsupervised color quantization of a color image. The red, green and blue color component values of a given color image are passed as input instances into FA which then groups similar colors into the same class. The average of all of the colors in a given class then replaces the pixel values whose original colors belonged to th...
متن کاملContent-Based Image Retrieval Via Vector Quantization
Image retrieval and image compression are each areas that have received considerable attention in the past. In this work, we present an approach for content-based image retrieval (CBIR) using vector quantization (VQ). Using VQ allows us to retain the image database in compressed form without any need to store additional features for image retrieval. The hope is that encoding an image with a cod...
متن کاملUnsupervised Learning of Compositional Sparse Code for Natural Image Representation
This article proposes an unsupervised method for learning compositional sparse code for representing natural images. Our method is built upon the original sparse coding framework where there is a dictionary of basis functions often in the form of localized, elongated and oriented wavelets, so that each image can be represented by a linear combination of a small number of basis functions automat...
متن کاملContrastive Learning for Image Captioning
Image captioning, a popular topic in computer vision, has achieved substantial progress in recent years. However, the distinctiveness of natural descriptions is often overlooked in previous work. It is closely related to the quality of captions, as distinctive captions are more likely to describe images with their unique aspects. In this work, we propose a new learning method, Contrastive Learn...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the ... AAAI Conference on Artificial Intelligence
سال: 2022
ISSN: ['2159-5399', '2374-3468']
DOI: https://doi.org/10.1609/aaai.v36i3.20147